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Abstract: Three dimensional topologically massive gravity (TMG) with a negative cos-

mological constant −ℓ−2 and positive Newton constant G admits an AdS3 vacuum solution

for any value of the graviton mass µ. These are all known to be perturbatively unstable

except at the recently explored chiral point µℓ = 1. However we show herein that for

every value of µℓ 6= 3 there are two other (potentially stable) vacuum solutions given by

SU(2,R)×U(1)-invariant warped AdS3 geometries, with a timelike or spacelike U(1) isom-

etry. Critical behavior occurs at µℓ = 3, where the warping transitions from a stretching

to a squashing, and there are a pair of warped solutions with a null U(1) isometry. For

µℓ > 3, there are known warped black hole solutions which are asymptotic to warped AdS3.

We show that these black holes are discrete quotients of warped AdS3 just as BTZ black

holes are discrete quotients of ordinary AdS3. Moreover new solutions of this type, relevant

to any theory with warped AdS3 solutions, are exhibited. Finally we note that the black

hole thermodynamics is consistent with the hypothesis that, for µℓ > 3, the warped AdS3

ground state of TMG is holographically dual to a 2D boundary CFT with central charges

cR = 15(µℓ)2+81
Gµ((µℓ)2+27)

and cL = 12µℓ2

G((µℓ)2+27)
.
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1 Introduction and summary

Topologically massive gravity [1, 2] is described by the action

ITMG =
1

16πG

[
∫

d3x
√−g(R+ 2/ℓ2) +

1

µ
ICS

]

(1.1)

where ICS is the gravitational Chern-Simons action (given explicitly below) and we take

bothG and µ positive.1 For every value of the coupling µ TMG has a classical AdS3 solution

with radius ℓ. For large ℓ (and positive G) the linearized excitations about AdS3 describe

a propagating graviton with positive mass µ, but negative energy (as well as the usual

massless positive-energy gravitons). Hence the AdS3 vacua are generically expected to be

unstable and the quantum theory appears ill-defined. However at the critical value µℓ = 1

the Compton wavelength of the massive graviton reaches the AdS3 radius and the linearized

energy spectrum of asymptotically AdS3 excitations is non-negative.2 Accordingly it was

conjectured [10] that a consistent quantum theory of so-called chiral gravity can be defined

at µℓ = 1.

In this paper we shall focus on non-chiral values of µℓ. The fact that for µℓ 6= 1 the

AdS3 vacua are all unstable does not preclude the possibility that these theories have other

stable ground states around which they can be consistently expanded. With this in mind

we look for other vacua and find that there are in fact two warped AdS3 vacua (some of

which were known already in [11, 12]) for every value of µ. Ordinary AdS3 can be viewed

as a fibration of the real line over AdS2. Warped AdS3 is similar but with a constant warp

factor multiplying the fiber metric. This breaks the SU(2,R)L ×SU(2,R)R isometry group

of AdS3 down to SU(2,R) × U(1). The fiber is stretched (squashed) for µℓ > 3 (µℓ < 3)

and there are solutions with both timelike and spacelike U(1) isometries. At the critical

value µℓ = 3 there are still two warped solutions, but both have a null U(1) isometry.

The curvature of the warped solutions is of order µ2. Hence the Compton wavelength

of the massive graviton is always of order the radius of curvature and it cannot be decoupled

1For a recent discussion of the negative G case see [3, 4].
2 By asymptotically AdS3 we mean in the usual sense of Brown and Henneaux [5] or Fefferman and

Graham [6]. It was verified in [7] that these boundary conditions are consistent for TMG in that the

generators of the asymptotic symmetry group are well-defined finite expressions. It is however possible [8]

that there is more than one set of consistent AdS3 boundary conditions defining inequivalent theories.

Recently an alternate definiton of the theory with logarithmically weaker boundary conditions, referred to

as “cosmological topologically massive gravity at the chiral point”, has been proposed [9], but the asymptotic

symmetry group or the finiteness of its generators have yet to be studied. It was established [9] that if the

theory can be consistently defined in this manner it is unstable, does not have a hermitian Hamiltonian,

and is potentially dual to a logarithmic CFT.

– 1 –



J
H
E
P
0
3
(
2
0
0
9
)
1
3
0

from that of the background by taking µ → ∞ as in the ordinary AdS3 case. Therefore

it is not a priori obvious whether or not the massive gravitons lead to instabilities of the

warped vacua. The first (as yet untaken) steps are to understand the boundary conditions

for warped AdS3, and to solve for the linearized spectrum. The reduced isometry group

makes these tasks substantially more difficult than for ordinary AdS3. At present we do

not know whether or when the warped vacua are perturbatively stable. This is a key issue

and we hope to return to it at a later point.

For µℓ > 3, there are known regular black hole solutions [13–15] which are asymptotic

to warped AdS3 with a spacelike U(1). We show herein that these warped black holes are

discrete quotients by an element of SU(2,R) × U(1) of warped AdS3, just as BTZ black

holes are discrete quotients of AdS3 [16–18]. We further describe a fascinating zoo of other

solutions of this type for other values of µ.

It is important to note that warped AdS3 arises in a number of contexts besides TMG,

see e.g. [14, 19–26]. It follows from our quotient construction that the warped black holes

are solutions of all these theories as well. In addition warped AdS3 is a submanifold (at

fixed polar angle) of the near horizon geometry of extremal Kerr [23, 27]. We will report

elsewhere on the application of our results to Kerr [28].

In AdS3 the group of elements defining the quotient selects a left and right temperature

TL and TR of the boundary CFT. Using cL,R = 3ℓ/2G (and assuming unitarity), the

density of states of the boundary CFT exactly matches the Bekenstein-Hawking entropy

of the corresponding black hole [29], thereby explaining the latter. A similar exact match

is found for warped black holes in warped AdS3 provided the central charges are

cR =
15(µℓ)2 + 81

Gµ((µℓ)2 + 27)
(1.2)

cL =
12µℓ2

G((µℓ)2 + 27)
. (1.3)

As this picture fits together rather nicely we cannot resist conjecturing that µℓ > 3 TMG

defined with suitable asymptotically warped boundary conditions exists and is dual to a

2D boundary CFT with central charges (1.2) and (1.3).3 Some non-trivial - but far from

definitive - evidence for the conjecture is given herein.

In the next section we define the theory and our conventions. In section 3 we find the

classical warped AdS3 vacua for all µ. In section 4 we review the known warped black hole

solutions. In section 5 we show that they are quotients of warped AdS3. Section 6 describes

the general quotient solution. In section 7 we describe the black hole thermodynamics and

formulate a conjecture on the existence of a boundary CFT dual to warped AdS3.

After this work was completed several works appeared [30, 31] which overlap with

section 3 as well as [32–34] which finds the null black holes of section 6.3 in the context of

cold atoms.

3We do not have a conjecture for µℓ ≤ 3 except of course for µℓ = 1.

– 2 –
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2 Framework

Our story begins with the action for three dimensional topologically massive gravity with

a negative cosmological constant,

ITMG =
1

16πG

∫

M

d3x
√−g

(

R+ 2/ℓ2
)

(2.1)

+
ℓ

96πGν

∫

M

d3x
√−gελµνΓr

λσ

(

∂µΓσ
rν +

2

3
Γσ

µτΓτ
νr

)

where ετσu = +1/
√−g is the Levi-Civita tensor and G has the conventional positive sign.

The coefficient of the Chern-Simons action involves the dimensionless coupling ν which is

related to the graviton mass µ by

ν =
µℓ

3
(2.2)

For asymptotically AdS3 spacetimes there is a critical chiral gravity theory at µℓ = 1 or

ν = 1
3 [10]. However our main interest in this paper are the warped AdS3 vacua. These

exhibit critical behavior at ν = 1 or µℓ = 3. At the risk of confusion we use ν rather than

µ as the formulae are significantly simpler. Since the Chern-Simons is parity odd without

loss of generality we may take ν to be positive.

Upon varying the above action with respect to the metric we obtain the bulk equation

of motion,

Gµν − 1

ℓ2
gµν +

ℓ

3ν
Cµν = 0 (2.3)

where Gµν is the Einstein tensor and Cµν is the Cotton tensor:

Cµν = ε αβ
µ ∇α

(

Rβν − 1

4
gβνR

)

(2.4)

From the equations of motion we see that any Einstein vacuum solution is also a solution of

TMG since Gµν = gµν/ℓ
2. There are also non-Einstein solutions that solve these equations

of motion which we now proceed to explore.

3 SU(2, R) × U(1)-invariant TMG vacua

The simplest non-Einstein solution to TMG will be referred to as warped AdS3, as it involves

a warped fibration. For every value of ν there are two such solutions, and the structure

changes qualitatively at ν = 1. The timelike warped case was previously discovered as a

solution of TMG by Nutku and Gürses [13, 14]. It has also been studied in various other

contexts [19–24, 35–37]. To find the general solution we begin by recalling that AdS3 can

be written as a kind of Hopf fibration over Lorentzian (or Euclidean) AdS2 where the fiber

is the real line [20, 23, 38]. The metric can be written as a spacelike (or timelike) fibration

with fiber coordinate u (or τ)

ds2 =
ℓ2

4

[

− cosh2 σdτ2 + dσ2 + (du+ sinhσdτ)2
]

(3.1)

=
ℓ2

4

[

cosh2 σdu2 + dσ2 − (dτ + sinhσdu)2
]

(3.2)

– 3 –
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with {u, τ, σ} ∈ [−∞,∞] and we have replaced u with −u in (3.2). The SU(2,R)L ×
SU(2,R)R isometries are given in appendix A. In order to obtain warped AdS3 we must

multiply the fiber by a warp factor, which breaks the isometry group to SU(2,R) × U(1),

where the U(1) is noncompact. Solutions of this type fall into six different classes.

3.1 Spacelike

A spacelike (or hyperbolic) warped anti-de Sitter solution is given by warping (3.1) in

the form

ds2 =
ℓ2

(ν2 + 3)

[

− cosh2 σdτ2 + dσ2 +
4ν2

ν2 + 3
(du+ sinhσdτ)2

]

(3.3)

For ν2 > 1, the warp factor is greater than unity, so we have spacelike stretched AdS3. If

ν2 < 1 we have spacelike squashed AdS3. The isometries preserved by (3.3) are given by

U(1)L × SU(2,R)R. Note that the solution is not warped at ν = 1.

3.2 Timelike

A timelike (or elliptic) warped anti-de Sitter solution is given by a warping of (3.2),

ds2 =
ℓ2

(ν2 + 3)

[

cosh2 σdu2 + dσ2 − 4ν2

ν2 + 3
(dτ + sinhσdu)2

]

(3.4)

Once again if ν2 > 1 we have timelike stretched AdS3. If ν2 < 1 we have timelike squashed

AdS3. As explored in [19, 23] timelike stretched AdS3 has closed timelike curves and is

essentially the Gödel spacetime. While such spacetimes are quite interesting in their own

right, we are limiting the scope of this paper to spacetimes without naked CTCs.

We may also write the squashed metric in the global coordinates4

ds2

ℓ2
= −dt2 +

dr2

r
(

(ν2 + 3)r + 4
) + 2νrdtdθ +

r

4

(

3(1 − ν2)r + 4
)

dθ2 (3.5)

The origin is at r = 0 where the (t, θ) metric determinant vanishes. Regularity requires

the identification

θ ∼ θ + 2π. (3.6)

The coordinate transformation relating the two metrics is a special case of equations (5.3)–

(5.5) below.

3.3 Null

Null (or parabolic) warped AdS3s [36] are given by the metrics,

ds2 = ℓ2

[

du2

u2
+
dx+dx−

u2
±
(

dx−

u2

)2
]

(3.7)

with coordinate range x± ∈ [−∞,∞] and u ∈ [0,∞]. The above metrics are a solution

to TMG only for ν2 = 1, and can be obtained as a kind of pp-wave limit in which ν → 1

4These coordinates are OK locally but have global singularities for the stretched case, as do the spacelike

warpings obtained by the double Wick rotation t → it, θ → iθ

– 4 –
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of the ν 6= 1 warped vacua. Pure AdS3 is retrieved by dropping the last (dx−)2 term.

The isometry group is SL(2,R) × U(1)null where the U(1)null is in the null direction. Null

warped AdS3 has recently appeared in a completely different context in the search for a

dual theory for cold atoms [25, 26]. It would be interesting to see whether the rest of the

warped anti-de Sitter metrics, or the null black hole solutions discussed below, are related

to this story.

In summary, for ν2 < 1 there are timelike and spacelike squashed vacua, while for

ν2 > 1 there are timelike and spacelike stretched vacua. At ν = 1 there are two null

warped vacua. All of these vacua have an SU(2,R) × U(1) isometry. In addition for every

ν there is the usual SU(2,R)L × SU(2,R)R-invariant AdS3 vacuum.

4 Spacelike stretched black holes

We now switch gears and study the black hole solutions which are asymptotic to warped

AdS3. Solutions which are free of naked CTCs or other pathologies are until now known

only for the asymptotically spacelike stretched (i.e. ν2 > 1) case [15].5 These will be

reviewed in this section. Closely related black objects were first discussed in [13, 14] and

further studied in [15, 39] where their conserved ADT charges [40–43] and some of their

thermodynamic properties were computed.

The metric describing the spacelike stretched black holes for ν2 > 1 is given in

Schwarzschild coordinates by

ds2

ℓ2
= dt2 +

dr2

(ν2 + 3)(r − r+)(r − r−)
+
(

2νr −
√

r+r−(ν2 + 3)
)

dtdθ

+
r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−) − 4ν
√

r+r−(ν2 + 3)
)

dθ2 (4.1)

where r ∈ [0,∞], t ∈ [−∞,∞] and θ ∼ θ+2π. In the ADM form the above metric becomes,

ds2 = −N(r)2dt2 + ℓ2R(r)2(dθ +N θ(r)dt)2 +
ℓ4dr2

4R(r)2N(r)2
(4.2)

where we have defined,

R(r)2 ≡ r

4

(

3(ν2 − 1)r + (ν2 + 3)(r+ + r−) − 4ν
√

r+r−(ν2 + 3)
)

(4.3)

N(r)2 ≡ ℓ2(ν2 + 3)(r − r+)(r − r−)

4R(r)2
(4.4)

N θ(r) ≡ 2νr −
√

r+r−(ν2 + 3)

2R(r)2
(4.5)

The horizons are located at r+ and r− where 1/grr as well as the determinant of the (t, θ)

metric vanishes. The vacuum solution for the black holes is given by r+ = r− = 0 and,

like M = J = 0 BTZ, is singular at the origin r = 0. We also note that the above metric

reduces to the metric of the BTZ black hole in a rotating frame when ν2 = 1. In the

5These will be generalized below for some other asymptotics.

– 5 –
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parameter region given by ν2 > 1 we have physical black holes so long as r+ and r− are

non-negative. For ν2 < 1 we always encounter closed timelike curves at large values of r

when θ is identified. Such geometries will not be considered in this paper.

Finally we mention that the spacelike stretched black hole was studied in a slightly

different coordinate system in [15] and we give the details of this metric in appendix C.

At this point we have finished describing the basic geometry of the previously known non-

Einstein black hole solutions of TMG.

5 Warped black holes as quotients

In this section we will show that the known warped black holes are quotients of warped

AdS3 under a discrete subgroup Γ of the isometry group, much as BTZ black holes are

quotients of AdS3 [16, 17].

5.1 Curvature invariants

A first hint that warped black holes are locally equivalent to warped AdS3 comes from

looking at the coordinate invariant quantities. In three dimensions these are built from the

Ricci tensor and its derivatives. It turns out that warped AdS3 and the warped black hole

solutions have the same values for these curvature invariants. The invariants built out of

the Ricci tensor are given by,

{R,RµνR
µν , RµνR

µβRν
β} =

6

ℓ2

{

−1,
3 − 2ν2 + ν4

ℓ2
,
−9 + 9ν2 − 3ν4 − ν6

ℓ4

}

(5.1)

The derivatives of the Ricci tensor give rise to the following invariant,

∇µR
βα∇αR

µ
β =

18ν2(ν2 − 1)2

ℓ6
(5.2)

The above agreement between the coordinate invariant quantities of the warped AdS3 and

the warped black holes suggests that they are in fact locally equivalent (see [44] for a rigor-

ous discussion of local equivalence in three dimensions) as we will now demonstrate directly.

5.2 Coordinate transformations

In this subsection we exhibit a local coordinate transformation from warped AdS3 to the

warped black hole metric and thus establish the claim that known warped black holes

are locally equivalent to warped AdS3. When we are in the parameter range ν2 > 1 the

transformation between (3.3) and (4.1) is,

τ = tan−1

[

2
√

(r − r+)(r − r−)

2r − r+ − r−
sinh

(

1

4
(r+ − r−)(ν2 + 3)θ

)

]

(5.3)

u =
ν2 + 3

4ν

[

2t+
(

ν(r+ + r−) −
√

r+r−(ν2 + 3)
)

θ
]

− tanh−1

[

r+ + r− − 2r

r+ − r−
coth

(

1

4
(r+ − r−)(ν2 + 3)θ

)]

(5.4)

σ = sinh−1

[

2
√

(r − r+)(r − r−)

r+ − r−
cosh

(

1

4
(r+ − r−)(ν2 + 3)θ

)

]

(5.5)

– 6 –
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A similar transformation takes us from (3.4) to (4.1) when we are in the parameter range

ν2 < 1 although the solutions are not regular in that region. The above transformation

breaks down for extremal black holes and we present instead the coordinate transformation

in appendix B.

5.3 Warped AdS3 quotients

Since the warped black holes are locally warped AdS3, they must be a quotient of the latter

by a discrete subgroup Γ of the SU(2,R)×U(1) isometries - in direct analogy with the case

of the BTZ black hole [17]. In this section we find Γ. Let us identify points P in warped

AdS3 under the action of a Killing vector ξ defining a one parameter subgroup of the full

isometry group as follows [17],

P ∼ e2πkξP, k = 0, 1, 2 . . . (5.6)

The isometries of the various types of warped AdS3 are given in appendix A. From (5.4)

we see that in order for the coordinate transformation to reproduce the black hole we must

identify points along the ∂θ direction such that θ ∼ θ + 2π. Expressing the ∂θ Killing

vector in terms of the original warped anti-de Sitter coordinates, we discretely quotient

along the isometry

2πξ = ∂θ =
ν2 + 3

8

[(

r+ + r− −
√

(ν2 + 3)r+r−
ν

)

J2 − (r+ − r−)J̃2

]

(5.7)

where the Killing vectors J2 ∈ U(1)L and J̃2 ∈ SU(2,R)R are given in the appendix.

Defining the left and right moving temperatures

TR ≡ (ν2 + 3)(r+ − r−)

8πℓ
(5.8)

TL ≡ (ν2 + 3)

8πℓ

(

r+ + r− −
√

(ν2 + 3)r+r−
ν

)

(5.9)

we have

∂θ = πℓ(TLJ2 − TRJ̃2) (5.10)

TL and TR are referred to as temperatures in analogy with the BTZ case where it is

known [45] that the coefficients of the shifts are the temperatures of the dual 2d CFT. In

the coordinates (3.3) the norm is

|TLJ2 − TRJ̃2|2 =
12ℓ2(ν2 − 1)

(ν2 + 3)2
[TR cos(τ) cosh(σ)]2

+
32ν2ℓ2

(ν2 + 3)2
TLTR cos(τ) cosh(σ)

+
4ℓ2

ν2 + 3
T 2

R +
16ν2ℓ2

(ν2 + 3)2
T 2

L (5.11)

Note that for the squashed case the norm is negative at the boundary so a θ quotient would

produce CTCs.

In summary the spacelike stretched black hole solution (4.1) is a quotient of spacelike

stretched AdS3 (3.3) by a 2π shift generated by the isometry (5.7).

– 7 –
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6 More general quotients

In this section we consider more general quotients of warped AdS3 by discrete subgroups of

the isometry group which preserves at least U(1)×U(1). In appendix A the classification of

such discrete subroups is extracted from [17]. There are a rich variety of possible structures

and they differ for the six possible warpings as discussed below.

Of particular interest are quotients that correspond to regular black holes. By this

we mean a geometry with a geometric or causal singularity hidden by an event horizon.

Geometric singularities arise when the discrete subgroup has a fixed point. Causal sin-

gularities arise when the identification produces null or timelike closed curves. In either

case the norm of the quotient-generating isometry has a zero. This singularity should be

shielded from infinity by an event horizon, i.e. a place where the N2 multiplying dt2 in the

ADM form of the metric vanishes.

We note that this might not be the only type of geometry which should be thought

of as a black hole. For example the boundary of the Poincare patch of AdS2 or AdS3 is

an event horizon when these spaces arise as near-horizon limits of extremal black holes or

strings [46]. There is a Killing horizon associated to time translations but no singularity

behind it. These spaces, though free of singularities, can be thought of as black holes.

Also one may consider black hole geometries - such as the black holes in a Gödel universe -

which have a regular region outside the horizon but CTCs at infinity. Hence the following

discussion is a beginning and does not exhaust all interesting possibilities for black holes.

6.1 Spacelike Warped

We begin with the spacelike warped case. The three types of one-parameter subgroups are

generated by

ηa : β2J2 + α0J̃0 (6.1)

ηb : β2J2 + α2J̃2 (6.2)

ηc : β2J2 + J̃0 + J̃2 (6.3)

The norms of the Killing vectors generating the subgroups ηa, ηb and ηc are given

in (A.15), (A.16), (A.17). The ηc type identifications can be thought of as extremal limits

of the previous two cases.

6.1.1 Stretched

We begin with the stretched case. If we quotient along ηb with α2 6= 0 we obtain the warped

black hole solution (4.1), as we already discussed. In order to locate the horizon, we go to

the coordinate system where ∂φ = ηb, ∂t = J2 and r = −α2

β2
cosh σ cos τ . Then, N2 in the

ADM decomposition is given by

N2 =
(J2 · ηb)

2

|ηb|2
− |J2|2 (6.4)
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The zeroes of (N2|ηb|2) give the locations of the horizons, and the zeroes of |ηb|2 determine

the location of the causal singularities. Explicitly these are located at

r± ≡ ±|α2

β2
|, and, rs± ≡

−4ν2 ±
√

(ν2 + 3)
(

4ν2 − 3(ν2 − 1)
α2

2

β2

2

)

3(ν2 − 1)
(6.5)

where r± denote the horizons and rs+ denotes the location of the causal singularity. The

causal singularity exists only when β2
2 > 3(ν2 − 1)α2

2/4ν
2 and is hidden by the inner

horizon for all α2 and β2 except when |α2| = |β2| for which r− and rs+ coincide. When

β2
2 ≤ 3(ν2 − 1)α2

2/4ν
2 one finds no CTCs upon identification along ηb and there are no

singular regions of the spacetime.

Identifying along ηc with β2 > 0 gives us the extremal black hole solutions of (4.1)

whereas with β2 < 0 there are CTCs close to the boundary. Identifying along ηa with

α0 6= 0 gives us naked causal singularities. Finally, identifying along ηa with α0 = 0 gives

us no CTCs, and we obtain the self-dual type solutions which we will now describe.

Self-dual solutions. When we identify along J2 we find no CTCs and one could call

the quotients self-dual solutions in analogy to those quotients of AdS3 studied in [18]. In

Schwarzschild coordinates this corresponds to identifying t, i.e. t ∼ t+ 2πα. Thus we can

define a left moving temperature TL = (ν2 + 3)α/(4πνℓ) in the same spirit as (5.9). The

right moving temperature vanishes. The entropy of the Killing horizon can be computed

using the techniques in [47–49] and we get:6

S = SE + SCS =
παℓ

3G
=
π2TLℓ

3

4νℓ

(ν2 + 3)G
≡ π2ℓ

3
cLTL (6.6)

Notice that in Schwarzschild coordinates (4.1), the self-dual solution has a Killing

horizon at the value of r where grr vanishes. Thus, even though these objects don’t fall

strictly under the category of regular black holes as defined above, they are in many ways

like black holes including their thermodynamic behavior. A similar situation holds for all

the self-dual black holes we uncover in what follows. These ones, along with their ν < 1

squashed counterparts, are however of particular interest as they appear as the near horizon

region of extremal Kerr at fixed polar angle [23, 27].

6.1.2 Squashed

In the squashed case with ν < 1 the norms of the Killing vectors are negative at the

boundary unless we identify along ηa with α0 = 0 or along ηb with α2 = 0. Then the

quotients become the self-dual type solutions we mentioned.

The entropy of the squashed self-dual solutions is again given by (6.6). Notice that

since we are identifying the ∂u direction, which is always spacelike for spacelike warped

6In section 7 we will define the quantity cL ≡ 4νℓ/(ν2 + 3)G in (6.6) as a left moving central charge

(together with a similar formula for cR) and see that the stretched black hole entropy of (4.1) obeys the

Cardy formula. Using the same cL we see that the self-dual solution has entropy obeying the Cardy formula

as well.
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AdS, there is no pathology associated with the self-dual solution, even for ν < 1. As we saw

in (6.6), such self-dual solutions have an entropy obeying the Cardy formula. Furthermore,

they have a Killing horizon in the Schwarzschild coordinates. All these facts suggest that

they should be regarded as black holes.

6.2 Timelike warped

The one-parameter subgroups are given by

ξa : α0J̃0 + β2J2 (6.7)

ξb : α0J̃0 + β0J0 (6.8)

ξc : α0J̃0 + J0 + J2 (6.9)

The norms of the Killing vectors generating the subgroups are given in (A.22), (A.23)

and (A.24).

6.2.1 Stretched

In the stretched case we already encountered CTCs at infinity for the vacuum solution

without any quotienting. Hence there are no regular black holes.

6.2.2 Squashed

For the squashed case, identifying along ξa we find no horizons. When α2
0 < 3(1−ν2)β2

2/4ν
2

we find no CTCs either. Identifying along ξb always gives rise to CTCs outside the horizon.

Identifying along ξc always gives rise to CTCs outside the horizon unless α0 vanishes in

which case we have no CTCs and we have a self-dual type solution.

6.3 Null warped

The one-parameter subgroups are given by

na = α0N0 +N (6.10)

nb = α1N1 +N (6.11)

nc = α1(N1 +N0) +N (6.12)

The norms of the Killing vectors generating the subgroups are given in (A.29), (A.30)

and (A.31).

6.3.1 Minus sign

For null warped AdS3 with a minus sign we encounter CTCs at the boundary unless α0 = 0

in which case we have a singularity-free solution.
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6.3.2 Plus sign

For null warped AdS3 with a plus sign, identifying along nb gives no causal singularity

when αa is positive and gives CTCs outside the horizon when α1 is negative.

Identifying along na we encounter a horizon and causal singularity located at

rh = 0, rs =
−1 ±

√

1 − α2
0

2
(6.13)

The horizon, rh, lies outside the causal singularity, rs, whenever 0 < α0 < 1. One can

obtain a real coordinate transformation taking the quotiented null warped metric to the

following metric

ds2

ℓ2
= − r2

r2 + r + α̃2
0

dt2 +
(

r2 + r + α̃2
0

)

(

dφ− rdt

r2 + r + α̃2
0

)2

+
dr2

4r2
(6.14)

where r ∈ [rs,∞], u ∈ [−∞,∞] and φ ∼ φ + 2π and we have defined α̃0 ≡ α0/2. The

coordinate transformation is given by

x− = eα0φ (6.15)

x+ = φ− 2t− α0

2r
(6.16)

u =

√

α0eα0φ

r
(6.17)

We can recognize the above solution as the extremal BC black hole (C.1) for the special

value Ω = 1
2 and ρ0 = 3(ν2 − 1)α2

0/4(ν
2 + 3) in the limit ν → 1. The conserved ADT

charges [15] of this black hole with respect to the ∂t and ∂φ Killing vectors are given by

MADT = 0, J ADT = − α2
0ℓ

12G
(6.18)

The temperature and angular momentum at the horizon as defined in (7.12) and (7.13)

vanish for the above solution. However the right moving temperature is non-zero:

TR =
α0

2πℓ
(6.19)

and the thermodynamic entropy is given by

S =
πα0ℓ

3G
=
π2ℓTR

3

(5ν2 + 3)ℓ

Gν(ν2 + 3)
|ν→1 (6.20)

The term (5ν2 + 3)ℓ/Gν(ν2 + 3) will be recognized as the right moving central charge in

the following section. A similar situation to na holds if we identify along nc.

7 Thermodynamics

The thermodynamics of spacelike stretched black holes was studied in [15] where it was

shown that, after accounting for the effects of the Chern-Simons term on the various ther-

modynamic quanitities, they obey the first law. In this section we reorganize the formulae

in a suggestive manner to motivate the conjecture of the concluding section.
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7.1 Entropy

The entropy of the warped black hole is composed of two terms. There is the usual term

stemming from the Einstein action and a term coming from the Chern-Simons part of the

action [47–49]. The total entropy of the warped black hole is given by

S =
πℓ

24νG

[

(9ν2 + 3)r+ − (ν2 + 3)r− − 4ν
√

(ν2 + 3)r+r−

]

(7.1)

It is instructive to rewrite this in terms of the temperatures TL and TR appearing in (5.9).

Defining right and left moving “central charges”,

cR ≡ (5ν2 + 3)ℓ

Gν(ν2 + 3)
(7.2)

cL ≡ 4νℓ

G(ν2 + 3)
(7.3)

allows us to express the entropy of the warped black hole in the following suggestive manner

S =
π2ℓ

3
(cLTL + cRTR) . (7.4)

This is precisely the formula for the entropy of a 2d CFT with central charges cL and cR at

temperatures TL and TR. Of course the central charges were defined so that this relation

holds: a nontrivial observation is that so defined they depend only on the coupling constant

ν and not r±. A further nontrivial fact is that the left and right moving central charges,

cL and cR, are equal to the left and right moving central charges of TMG in AdS3 when

ν = 1. A final nontrivial check is that the difference between the left and right moving

central charges matches the coefficient of the diffeomorphism anomaly [50]

cL − cR = − ℓ

Gν
(7.5)

One can also define the following left and right moving energies,

EL ≡ π2ℓ

6
cLT

2
L (7.6)

ER ≡ π2ℓ

6
cRT

2
R (7.7)

which by construction obey

dS

dEL
=

1

TL
(7.8)

dS

dER
=

1

TR
. (7.9)

7.2 First law

A black hole is characterized by conserved charges such as the energy or angular momentum,

as well as conjugate variables such as temperature or angular potential. It is a nontrivial

test of black hole dynamics that these quantities are related by the first law. The spacelike
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stretched black holes were shown to pass this test in [15]. They compute the so-called ADT

mass MADT and angular momentum J ADT, using the surface integral expressions derived

in [40–43] for the conserved charges associated to the asymptotic Killing vectors ∂t and ∂θ

of (4.1) and find

MADT =
(ν2 + 3)

24G

(

r+ + r− − 1

ν

√

r+r−(ν2 + 3)

)

(7.10)

J ADT =
νℓ(ν2 + 3)

96G

[

(

r+ + r− − 1

ν

√

r+r−(ν2 + 3)

)2

−(5ν2 + 3)

4ν2
(r+ − r−)2

]

(7.11)

They further compute the Hawking temperature TH , defined as the surface gravity of the

horizon divided by 2π, and the angular velocity of the horizon ΩH as

TH ≡ 1

2πℓ

√
grr∂rN =

(ν2 + 3)

4πℓ

(r+ − r−)

(2νr+ −
√

(ν2 + 3)r+r−)
(7.12)

ΩH ≡ N θ

ℓ
=

2

(2νr+ −
√

(ν2 + 3)r+r−)ℓ
(7.13)

They then explicitly check that these are related to the entropy via the first law:

TH =

(

∂S

∂MADT

)−1

, ΩH = TH

(

∂S

∂J ADT

)

. (7.14)

In the preceding subsection we propose that the conserved charges (EL, ER) and po-

tentials (TL, TR) are more natural for this system than (MADT,J ADT) and TH ,ΩH . Since

this is just a change of variables - albeit an illuminating one - the first law will still hold

for the new charges/potentials. To see this explicitly one can express the conserved ADT

charges in terms of the left and right moving temperatures and energies as follows,

MADT =
1

G

√

2ℓEL

3cL
(7.15)

J ADT = ℓ(EL −ER). (7.16)

The potentials are related by

1

TH
=

4πνℓ

ν2 + 3

TL + TR

TR
(7.17)

ΩH

TH
=

1

TRℓ
. (7.18)

One may then readily use these relations to verify that (7.14) is equivalent to the first

law (7.9) in the new variables.7

7We note that similar formulae work for the null black holes which arise in the ν → 1 limit and have

TL=0.
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7.3 A conjecture

Topologically massive gravity with ν > 1 (µℓ > 3) admits an U(1)L × SU(2,R)R-invariant

candidiate ground state referred to as spacelike stretched (warped) AdS3, as well as regular

black hole solutions. We conjecture that with suitable asymptotically stretched AdS3

boundary conditions ν > 1 quantum TMG is holographically dual to a 2D boundary CFT

with cR = (5ν2+3)ℓ
Gν(ν2+3)

and cL = 4νℓ
G(ν2+3)

.

The primary motivations for this conjecture are that application of the Cardy formula

to the CFT density of states reproduces the black hole entropy, and that as far as we

understand the conjecture does not contradict any known properties of the theory. The

conjecture passed some weak tests in section 7. Further tests of the conjecture are possible.

After understanding the boundary conditions, perturbative stability must be demonstrated.

These boundary conditions will also determine the asymptotic symmetry group, and per-

haps enable a check of the formulae (7.2) and (7.3) for the central charges [51] along the

lines of [37]. Finally, it might be possible to engineer TMG on warped AdS3 in a decoupling

limit of string theory and find the dual CFT.
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A Isometries

We write down the relevant Killing vectors for the various warped AdS3 metrics. The

SU(2,R)L isometries are given by

J1 =
2 sinhu

cosh σ
∂τ − 2 cosh u∂σ + 2 tanh σ sinhu∂u (A.1)

J2 = 2∂u (A.2)

J0 = −2 coshu

cosh σ
∂τ + 2 sinhu∂σ − 2 tanh σ coshu∂u (A.3)

These satisfy the algebra [J1, J2] = 2J0, [J0, J1] = −2J2 and [J0, J2] = 2J1. The SU(2,R)R
isometries are given by

J̃1 = 2 sin τ tanhσ∂τ − 2 cos τ∂σ +
2 sin τ

coshσ
∂u (A.4)

J̃2 = −2 cos τ tanhσ∂τ − 2 sin τ∂σ − 2 cos τ

cosh σ
∂u (A.5)

J̃0 = 2∂τ (A.6)

These satisfy the algebra [J̃1, J̃2] = 2J̃0, [J̃0, J̃1] = −2J̃2 and [J̃0, J̃2] = 2J̃1.

As mentioned in the text the Killing vectors preserved by spacelike warped anti-de

Sitter space are given by the SU(2,R)R and J2. The Killing vectors preserved by timelike

warped anti-de Sitter space are given by the SU(2,R)L and J̃0.

– 14 –



J
H
E
P
0
3
(
2
0
0
9
)
1
3
0

The Killing vectors for null warped anti-de Sitter space are given by

N1 = ∂−, (A.7)

N0 = x−∂− +
u

2
∂u, (A.8)

N−1 = (x−)2∂− − u2∂+ + x−u∂u (A.9)

N = ∂+ (A.10)

where the U(1)null is spanned by N . These satisfy the algebra [N1, N0] = N1, [N−1, N0] =

−N−1 and [N1, N−1] = 2N0.

A.1 Classification of SU(2,R) × U(1) subgroups

In this section we classify the various one-parameter subgroups of the isometries for the

three types of warped anti-de Sitter space. Our classification is based on the classification

of the one-parameter subgroups of SU(2,R)L × SU(2,R)R given in [17].

A.1.1 Spacelike warped Anti-de Sitter space

Spacelike warped AdS has isometry group U(1)L × SU(2,R)R. The most general form of

the Killing vector along which we can quotient is

β2J2 + α2J̃2 + α0J̃0 + α1J̃1. (A.11)

We can always get rid of the α1 via a U(1)L × SU(2,R)R transformation. There are three

types of one parameter subgroups generated by

ηa : β2J2 + α0J̃0 (A.12)

ηb : β2J2 + α2J̃2 (A.13)

ηc : β2J2 + J̃0 + J̃2 (A.14)

In terms of the classification in [17], these correspond to Ia, Ib, and IIa (the first form)

respectively. The norms of the above generators are

η2
a =

12ℓ2(ν2 − 1)

(ν2 + 3)2
[α0 sinh(σ)]2 +

32ν2ℓ2

(ν2 + 3)2
β2 [α0 sinh(σ)]

− 4ℓ2

ν2 + 3
α2

0 +
16ν2ℓ2

(ν2 + 3)2
β2

2 (A.15)

η2
b =

12ℓ2(ν2 − 1)

(ν2 + 3)2
[α2 cos(τ) cosh(σ)]2 − 32ν2ℓ2

(ν2 + 3)2
β2 [α2 cos(τ) cosh(σ)]

+
4ℓ2

ν2 + 3
(α2

2) +
16ν2ℓ2

(ν2 + 3)2
β2

2 (A.16)

η2
c =

12ℓ2(ν2 − 1)

(ν2 + 3)2
[sinh(σ) − cos(τ) cosh(σ)]2 +

32ν2ℓ2

(ν2 + 3)2
β2 [sinh(σ) − cos(τ) cosh(σ)]

+
16ν2ℓ2

(ν2 + 3)2
β2

2 (A.17)
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A.1.2 Timelike warped Anti-de Sitter space

For timelike warped, the most general form of the Killing vector is

α0J̃0 + β2J2 + β0J0 + β1J1. (A.18)

We can always eliminate β1 via an SU(2,R)L × U(1)R transformation. There are three

types of one parameter subgroups generated by

ξa : α0J̃0 + β2J2 (A.19)

ξb : α0J̃0 + β0J0 (A.20)

ξc : α0J̃0 + J0 + J2 (A.21)

In terms of the classification in [17], these correspond to Ia, Ib, and IIa (the first form)

respectively. The norms are

ξ2a = −12ℓ2(ν2 − 1)

(ν2+3)2
[β2 sinh(σ)]2 − 32ν2ℓ2

(ν2 + 3)2
α0 [β2 sinh(σ)]

+
4ℓ2

ν2 + 3
(β2

2) − 16ν2ℓ2

(ν2 + 3)2
α2

0 (A.22)

ξ2b = −12ℓ2(ν2 − 1)

(ν2+3)2
[β0 cosh(u) cosh(σ)]2 +

32ν2ℓ2

(ν2 + 3)2
α0 [β0 cosh(u) cosh(σ)]

− 4ℓ2

ν2 + 3
(β2

0) − 16ν2ℓ2

(ν2 + 3)2
α2

0 (A.23)

ξ2c = −12ℓ2(ν2 − 1)

(ν2+3)2
[sinh(σ)−cosh(u) cosh(σ)]2 − 32ν2ℓ2

(ν2 + 3)2
α0 [sinh(σ) − cosh(u) cosh(σ)]

− 16ν2ℓ2

(ν2 + 3)2
α2

0 (A.24)

A.1.3 Null warped Anti-de Sitter space

The most general linear combination of Killing vectors is

ξ = N + α1N1 + α0N0 + α−1N−1 (A.25)

By a shift of x−, we can eliminate the term with N−1. Then the distinct subgroups are

generated by

na = α0N0 +N (A.26)

nb = α1N1 +N (A.27)

nc = α1(N1 +N0) +N (A.28)

We have not included a coefficient in front of the N because it is null. The norm is

n2
a = ℓ2

(

±α
2
0(x

−)2

u4
+
α0

u2
(x−) +

α2
0

4

)

(A.29)

n2
b = ℓ2

(

±α
2
1

u4
+
α1

u2

)

(A.30)

n2
c = ℓ2

(

±α
2
1

u4
(1 + x−)2 +

α1

u2
(1 + x−) +

α2
1

4

)

(A.31)

where the plus sign corresponds to the null warped metric with a plus sign and vice versa.
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B Extremal black holes

It is convenient to introduce spacelike warped AdS3 in Poincare coordinates

ds2

ℓ2
=

1

ν2 + 3

(

−x2dψ2 +
dx2

x2
+

4ν2

ν2 + 3
(dφ+ xdψ)2

)

(B.1)

and note that the coordinate transformation from Poincare coordinates to the global coor-

dinate in (3.3) is:

ψ = − sin(τ)

2(tanh(σ) − cos(τ))
(B.2)

φ = u+ 2 tanh−1

(

eσ tan

(

τ

2

))

(B.3)

x = 2(sinh(σ) − cos(τ) cosh(σ)) (B.4)

The metric of extremal warped black hole is obtained by setting r+ = r− = rh in (4.1)

to obtain

ds2

ℓ2
= dt2 +

dr2

(ν2 + 3)(r − rh)2
+
(

2νr −
√

ν2 + 3rh

)

dtdθ

+
r

4

(

3(ν2 − 1)r + 2(ν2 + 3)rh − 4νrh
√

ν2 + 3
)

dθ2 (B.5)

Then the coordinate transformation from the Poincare coordinate to the extremal black

hole is

t =
2ν

(ν2 + 3)
φ+

rh(−2ν +
√
ν2 + 3)ψ

(ν2 + 3)
(B.6)

θ =
2ψ

ν2 + 3
(B.7)

r = x+ rh (B.8)

Combining the above coordinate transformations gives the coordinate transformation be-

tween warped AdS3 and the extremal warped black hole,

t =
2ν

(ν2 + 3)

(

u+ 2 tanh−1

(

eσ tan

(

τ

2

)))

− rh(−2ν +
√
ν2 + 3) sin(τ)

2(ν2 + 3)(tanh(σ) − cos(τ))
(B.9)

θ = − sin(τ)

(ν2 + 3)(tanh(σ) − cos(τ))
(B.10)

r = 2(sinh(σ) − cos(τ) cosh(σ)) + rh (B.11)

C BC coordinates

C.1 Metric

In [15] a warped black hole closely related to the Schwarzschild solution in (4.1) was

obtained by a simple transformation which we describe below. We will refer to these
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coordinates as BC coordinates for which the metric is given by

ds2BC

ℓ2
= −

(

ν2 + 3
)

4ν2

ρ2 − ρ2
0

R(ρ)2
dT 2 +

1

(ν2+3)

dρ2

ρ2 − ρ2
0

+R(ρ)2
[

dφ− 4ν2ρ+ 3(ν2 − 1)Ω

4ν2R(ρ)2
dT

]2

(C.1)

where ρ ∈ [ρs,∞], T ∈ [−∞,∞] and φ ∼ φ+ 2π. We have defined

R(ρ)2 ≡ ρ2 + 2Ωρ+
3Ω2(ν2 − 1)

4ν2
+

(ν2 + 3)

3(ν2 − 1)
ρ2
0 (C.2)

such that R(ρs) = 0. There is a vacuum solution analogous to the massless BTZ or

Poincare anti-de Sitter space for the BC black hole which is given by setting ρ0 = Ω = 0.

The horizons of the BC black hole are located at ρ = ±ρ0 where ρ0 > 0 and the (causal)

singularities are located at ρ = ρs. We would like to emphasize that these are singularities

in the causal structure [17] and not spacetime singularities that appear in the coordinate

invariants. The metric (C.1) contains such causal singularities in the parameter range

Ω2 >
4ν2ρ2

0

3(ν2 − 1)
(C.3)

In order to avoid naked singularities we require that ρ0 > ρs which gives us the bound

3(ν2 − 1)

4ν2

[

Ω +
4ν2ρ0

3(ν2 − 1)

]2

> 0 (C.4)

This condition is satisfied for ν2 > 1 and thus the physical black holes for both the

Schwarzschild and BC coordinates are in the same parameter region. The location of

the horizon and singularity coincide whenever Ω = −4ν2ρ0/3(ν
2 − 1).

C.2 Schwarzschild to BC coordinate transformation

The coordinate transformation relating the solution in Schwarzschild coordinates (4.1) to

the BC solution (C.1) is given by

t =
1

ν

(

3(ν2 − 1)

4

)1/2

T (C.5)

θ = −
(

4

3(ν2 − 1)

)1/2

φ (C.6)

r = ρ+
1

2
(r+ + r−) (C.7)

We note that the transformation is singular when ν2 = 1. When ν2 < 1 the transforma-

tion becomes imaginary. This corresponds to the parameter space containing unphysical

black holes. The relation between the parameters of the Schwarzschild solution and the

parameters of the BC solution can also be obtained quite simply and is given by

ρ2
0 =

1

4
(r+ − r−)2 (C.8)

Ω =
2ν2

3(ν2 − 1)

(

r+ + r− −
√

r+r−(ν2 + 3)

ν

)

(C.9)

such that ρs = −(r+ + r−)/2.

– 18 –
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[24] M. Bañados, G. Barnich, G. Compere and A. Gomberoff, Three dimensional origin of Gödel
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